# Nitrogen

#### Efficient and effective use of nitrogen in pastures and cropping

Ashley Paech, Holbrook Landcare Network



74 Albury St (PO Box 121) Holbrook NSW 2644 T 02 6036 3181 F 02 6036 3183 E office@holbrooklandcare.org.au



#### Why is nitrogen important?





74 Albury St (PO Box 121) Holbrook NSW 2644 T 02 6036 3181 F 02 6036 3183 E office@holbrooklandcare.org.au

www.holbrooklandcare.org.au



Network

#### Why is nitrogen important?





74 Albury St (PO Box 121) Holbrook NSW 2644 T 02 6036 3181 F 02 6036 3183 E office@holbrooklandcare.org.au

www.holbrooklandcare.org.au



Network

Holbrook

## Why is nitrogen important?

- Nitrogen along with phosphorus is an essential nutrient for plant growth.
- Major component of chlorophyll
- N is used to form amino acids, the building blocks of protein, provides structure to plant
- Healthy plants contain 3-4% N in above ground tissues





74 Albury St (PO Box 121) Holbrook NSW 2644 T 02 6036 3181 F 02 6036 3183 E office@holbrooklandcare.org.au













# Symptoms of N deficiency

- Pale green or yellowish from lack of chlorophyll
- Small
- Slow growing
- Limp, lack of structure
- Low protein, low energy
- Urine patches



74 Albury St (PO Box 121) Holbrook NSW 2644 T 02 6036 3181 F 02 6036 3183 E office@holbrooklandcare.org.au



#### How do you test for nitrogen?

- Plant tissue testing can be used to diagnose potential deficiencies
- Deep N soil testing
  - Soil cores taken to a depth representative of the rooting zone (often 60 cm)
  - Analysed for nitrates, ammonium and organic carbon
  - Taken early in the growing season to allow for N budgeting
  - Due to the volatile nature of N, samples should be analysed without delay







#### Supply and demand



74 Albury St (PO Box 121) Holbrook NSW 2644 T 02 6036 3181 F 02 6036 3183 E office@holbrooklandcare.org.au



#### Nitrogen demand

- Plant demand for nitrogen increases with plant size and yield.
- Calculating plant demand:
  - Potential yield grain or dry matter / ha
  - Nitrogen requirement how many kg N / unit of product



74 Albury St (PO Box 121) Holbrook NSW 2644 T 02 6036 3181 F 02 6036 3183 E office@holbrooklandcare.org.au



#### Potential yield



| Yield Potential (kg/ha) = | Stored Soil Moisture (mm)<br>+ Growing Season Rainfall (mm) | x Water Use Efficiency (kg/mm) |
|---------------------------|-------------------------------------------------------------|--------------------------------|
|                           | - Evaporation (mm)                                          |                                |



- Evaporation (110mm) & WUE (20kg grain/ha/mm or 55kg total DM/ha/mm)
- Eg 300mm GSR = 3.8t grain/ha or 10.45t total DM/ha
- Pasture
  - Evaporation (30mm) & WUE (30kg total DM/ha/mm)
  - Eg 300mm GSR = 8.1t DM/ha



74 Albury St (PO Box 121) Holbrook NSW 2644 T 02 6036 3181 F 02 6036 3183 E office@holbrooklandcare.org.au



#### Potential yield

Crop Potential Grain Yield



74 Albury St (PO Box 121) Holbrook NSW 2644 T 02 6036 3181 F 02 6036 3183 E office@holbrooklandcare.org.au



# Nitrogen demand

#### Crop Nitrogen Requirement for 1 t of grain

| Crop     | kg N/ha |
|----------|---------|
| Wheat    | 40      |
| Barley   | 40      |
| Oilseeds | 80      |

Wheat demand
3.8 t grain/ha x 40 kg N/t
= 152 kg N/ha

Pasture demand
3-4% Nitrogen/t DM = 30 - 40kg N/t
@ 8.1 t DM/ha
= 283 kg N/ha



74 Albury St (PO Box 121) Holbrook NSW 2644 T 02 6036 3181 F 02 6036 3183 E office@holbrooklandcare.org.au







## Plant available nitrogen

Crop Total Available Nitrogen (kg/ha) = Soil Test N (kg/ha) + Mineralised N (kg/ha)

Soil Test N (kg/ha) = [nitrate (ppm) + ammonium (ppm)] x bulk density x depth (cm) ÷ 10

#### Example Soil Test N

| Depth<br>interval<br>(cm)        | Soil texture | Layer<br>thickness<br>(cm)<br>[A] | Bulk<br>density<br>(g/cm <sup>3</sup> )<br>[B] | Total soil<br>nitrate<br>(ppm)<br>[C] | Ammonium<br>(ppm)<br>[D] | Available Soil N<br>(kg/ha)<br>[E = (C+D) x B x A ÷ 10] |  |
|----------------------------------|--------------|-----------------------------------|------------------------------------------------|---------------------------------------|--------------------------|---------------------------------------------------------|--|
| 0-10                             | Clay Loam    | 10                                | 1.35                                           | 3.3                                   | 1.7                      | 6.75                                                    |  |
| 10-40                            | Clay Loam    | 30                                | 1.35                                           | 8.3                                   | 0.5                      | 35.64                                                   |  |
| 40-70                            | Clay Loam    | 30                                | 1.35                                           | 3.3                                   | 0.5                      | 15.39                                                   |  |
| 70-100                           | Clay Loam    | 30                                | 1.35                                           | 4.6                                   | 0.5                      | 20.66                                                   |  |
| Total Soil Test Nitrogen (kg/ha) |              |                                   |                                                |                                       |                          | 78.44                                                   |  |

Mineralised Nitrogen (kg N/ha) = GSR (mm) x Organic Carbon % x 0.15 (kg N/ha)

= 300 x 0.96 x 0.15 = 43.2 kg N/ha

Crop Total Available Nitrogen (kg/ha) = Soil Test N (kg/ha) + Mineralised N (kg/ha)

= 42.39 + 43.2 = 86 kg N/ha (in top 40cm) and your business

74 Albury St (PO Box 121) Holbrook NSW 2644 T 02 6036 3181 F 02 6036 3183 E office@holbrooklandcare.org.au



# Nitrogen budgeting - Wheat

- Plant demand (kg N/ha) = Yield potential (t/ha) x Nitrogen requirement (kg N/t)
  - = 3.8 (t/ha) x 40 (kg N/t)

= 152 (kg N/ha)

- Fertiliser N (kg N/ha) = Plant demand (kg N/ha) Plant available nitrogen (kg N/ha)
  - = 152 (kg N/ha) 86 (kg N/ha)

= 66 (kg N/ha)

- Urea (kg/ha) = Fertiliser N (kg N/ha) / Nitrogen % of fertiliser
  - = 66 (kg N/ha) / 0.46

= 143 kg Urea/ha





g.au

# Nitrogen budgeting - Pasture

- Plant demand (kg N/ha) = Yield potential (t/ha) x Nitrogen requirement (kg N/t)
  - = 8.1 (t/ha) x 35 (kg N/t)
  - = 283 (kg N/ha)
- Fertiliser N (kg N/ha) = Plant demand (kg N/ha) Plant available nitrogen (kg N/ha)
  - = 283 (kg N/ha) 86 (kg N/ha)
  - = 197 (kg N/ha)
- Urea (kg/ha) = Fertiliser N (kg N/ha) / Nitrogen % of fertiliser
  - = 197 (kg N/ha) / 0.46
  - = 428 kg Urea/ha

But what is different in pastures?





74 Albury St (PO Box 121) Holbrook NSW 2644 T 02 6036 3181 F 02 6036 3183 E office@holbrooklandcare.org.au

#### Role of clovers

- In a typical ryegrass/clover pasture, 50 to 250 kg N/ha/year can be fixed by the clover, depending on such factors as the clover content of the pasture, soil fertility, and moisture availability.
- This is equivalent to applying urea (which is 46% nitrogen) at a rate of 109 to 543 kg of urea/ha/year.
- At a price of \$500/tonne spread for urea, the contribution by clover is equivalent to about \$55 to \$270/ha/year worth of nitrogen fertiliser.
- Hence, clover is a valuable component in the pasture sward for its nitrogen-fixing ability, as well as for its nutritional value.



74 Albury St (PO Box 121) Holbrook NSW 2644 T 02 6036 3181 F 02 6036 3183 E office@holbrooklandcare.org.au



# Soil organic carbon

- Total organic carbon is a measure of the carbon contained within soil organic matter.
- Continuous pasture builds organic carbon quicker than other rotations.
- Plant residue removal and constraints to crop growth reduce organic inputs.
- Erosion events remove topsoil which contains the bulk of a soil's organic matter. This can take years of good management to replace.
- Micro-organisms breakdown soil organic carbon as an energy source - this occurs faster when the soil is moist and warm.
- Cultivation can also enhance breakdown as soil aggregates are disrupted; making protected organic matter available to microorganisms to decompose and because better soil aeration increases microbial activity.
- Gravel in soils will 'dilute' the total carbon in your paddock when total organic carbon is calculated on a per hectare basis.







#### Nitrogen losses

- Nitrogen fertiliser can be lost from the system in four main ways: by leaching, denitrification, volatilisation and plant removal.
  - Leaching occurs when water draining through the soil profile carries dissolved N downwards, but N not leached beyond the root zone is still recoverable by the roots later in the season.
  - Denitrification occurs in wet soils when the oxygen concentration falls and microbes use nitrate instead of oxygen to support their growth. In denitrification, nitrate is converted to oxides of N and are lost to the air.



74 Albury St (PO Box 121) Holbrook NSW 2644 T 02 6036 3181 F 02 6036 3183 E office@holbrooklandcare.org.au



#### Nitrogen losses

- Volatilisation is the loss of N from the soil as ammonium gas. Volatilisation losses are affected by:
  - Weather conditions: warm soils and windy conditions are conducive to high losses from volatilisation
  - Soil pH: volatilisation losses are higher in alkaline soils
  - Form of N: ammonium-based fertilisers are more susceptible than nitrate-based fertilisers. Losses from urea can be high, while losses from UAN and ammonium sulphate are considerably lower.
  - Recent work from Victoria suggest losses of N from volatilisation of up to 1% per day with urea and about half that for UAN and ammonium sulphate.
  - The degree of incorporation: N left on the surface is more susceptible than N incorporated, banded or washed into the topsoil.
  - Soil moisture: Losses tend to be greater when fertiliser is applied to dry soil.



74 Albury St (PO Box 121) Holbrook NSW 2644 T 02 6036 3181 F 02 6036 3183 E office@holbrooklandcare.org.au















**T** 02 6036 3181 **F** 02 6036 3183 **E** office@holbrooklandcare.org.au



#### Nitrogen management





74 Albury St (PO Box 121) Holbrook NSW 2644 T 02 6036 3181 F 02 6036 3183 E office@holbrooklandcare.org.au



#### **General recommendations**

- Target a yield potential at the start of the season, whether it is based on average yield or calculated using average growing season rainfall
- Estimate the amount of N available from the soil, based on soil testing or on guidelines established from a number of years of paddock histories and local experience.
- Calculate the amount of N required to reach your target
- Apply 70-80% of the N required between mid tillering and mid stem elongation. Adjust the timing of the application depending on initial soil N and factors such as time of sowing and climate events
- The remaining N can be applied later, up to flag leaf emergence, to maintain or boost grain protein depending on seasonal conditions and soil moisture availability. The rates of N can be adjusted in response to seasonal conditions.
- Monitor yield potential throughout the season and adjust your strategy accordingly to minimise losses and maximise profit
- Consider the value of legumes in pastures or as break crops to reduce reliance on fertilisers and minimise losses



74 Albury St (PO Box 121) Holbrook NSW 2644 T 02 6036 3181 F 02 6036 3183 <u>E office@holbrooklandcare.org.au</u>



## Thankyou

- Ashley Paech
  - Holbrook Landcare Network
  - 02 6036 3181
  - <u>ashleypaech@holbrooklandcare.org.au</u>

This project has been supported through funding from the Australian Government





Network

Tolbro

74 Albury St (PO Box 121) Holbrook NSW 2644 T 02 6036 3181 F 02 6036 3183 E office@holbrooklandcare.org.au

|                    | Depth    | 0-10  | 10-20   | 20-30   | 30-50   | 50-70              |
|--------------------|----------|-------|---------|---------|---------|--------------------|
| Phosphorus Colwell | mg/Kg    | П     | 4       | 3       | 2       | 12                 |
| Potassium Colwell  | mg/Kg    | 187   | 141     | 146     | 172     | 222                |
| Sulphur            | mg/Kg    | 1.4   | 0.9     | 0.7     | 1.0     | 3.4                |
| Organic Carbon     | %        | 1.03  | 0.19    | 0.11    | 0.11    | I. <mark>04</mark> |
| Conductivity       | dS/m     | 0.020 | < 0.010 | < 0.010 | < 0.010 | 0.026              |
| pH Level (CaCl2)   | ρН       | 4.4   | 4.5     | 5.2     | 5.8     | 5.5                |
| pH Level (H2O)     | pН       | 5.3   | 5.6     | 5.9     | 6.5     | 6.3                |
| Exc.Aluminium      | meq/100g | 0.549 | 0.395   | 0.104   | 0.124   | 0.156              |
| Exc. Calcium       | meq/100g | 1.72  | 0.97    | 1.82    | 3.65    | 4.80               |
| Exc. Magnesium     | meq/100g | 0.20  | 0.10    | 0.28    | 0.83    | 1.69               |
| Exc. Potassium     | meq/100g | 0.48  | 0.36    | 0.37    | 0.44    | 0.57               |
| Exc. Sodium        | meq/100g | 0.01  | < 0.01  | 0.01    | 0.03    | 0.10               |
| Phosphorus Olsen   | mg/Kg    | 5.0   | I.7     | 1.1     | 1.4     | 5.2                |
| PBI                |          | 40.7  | 34.5    | 32.5    | 50.5    | 103.6              |



www.holbrooklandcare.org.au



Network

Holbrook